现在是一个大数据的时代,各个行业都是需要巨大的数据分析,也是要掌握这项技能的,很多人通过分析工具对数据进行一个分析,这样更加有助于工作,也更有效的给到我们所需要的信息,非常有价值。那么数据分析软件工具有哪些?一起来了解一下。
数据分析软件工具有哪些
数据分析:
资料分析,就是利用适当的统计分析方法,对收集到的大量资料进行分析、提取有用信息、形成结论,并对资料进行研究、归纳、总结的过程。该过程也是质量管理系统的辅助过程。实际上,数据分析可以帮助人们做出判断,从而采取适当的行动。
1.数据处理软件Excel和MySQL
Excel:在Excel,需要重点了解数据处理的重要技巧及函数的应用,特别是数据清理技术的应用。这项运用能对数据去伪存真,掌握数据主动权,全面掌控数据,Excel数据透视表的应用重在挖掘隐藏的数据价值,轻松整合海量数据,各种图表类型的制作技巧及Power Query、Power Pivot的应用可展现数据可视化效果。
数据库MySQL是一种关系数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性,MySQL所使用的SQL语言是用于访问数据库的最常用标准化语言,MySQL软件采用了双授权政策,分为社区版和商业版,由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,一般中小型网站的开发都选择MySQL作为网站数据库。
2.数据可视化Smartbi和Echarts
Smartbi设计过程可视化,鼠标拖拉拽即可快速完成数据集准备、可视化探索和仪表盘的制作,丰富的可视化展示,轻松制作BI看板,丰富的交互控件和图表组件,且不受维度、度量的限制,支持多数据来源,布局灵活,支持业务主题和自助数据集,双布局设计,跨屏发布到APP,支持流式布局。轻量化的BI软件,部署方便,走多维分析方向。能够快速制作数据可视化图表。
ECharts简单来说是互联网开发程序过程中,后台数据库用以实现数据到图形的映射的一个插件,具体来说一个使用JavaScript实现的开源可视化库,可以流畅地运行在PC和移动设备上,兼容当前绝大部分浏览器,底层依赖轻量级的矢量图形库ZRender,提供直观,交互丰富,可高度个性化定制的数据可视化图表。
3.大数据分析SPSS、Python、HiveSQL等
SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便地从其他数据库中读入数据,其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要,输出结果十分美观,存储时则是专用的SPO格式,可以转存为HTML格式和文本格式。
Python是一种计算机程序设计语言,是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越来越多被用于独立的、大型项目的开发。
HiveSQL是基于Hadoop的一个数据仓库软件,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。
免费的数据分析软件
1.DataMelt DataMelt
又叫DMelt,这款计算平台用于统计分析庞大数据和科学可视化。该软件最常用于自然科学、工程以及金融市场的建模和分析。它支持许多编程语言,包括Python、 BeanShell、Groovy、Ruby、Java及其他语言。 企业组织可通过动态脚本来访问大型库,包括面向计算和可视化的40000多个Java类和500个Python模块。更高级的功能需要开发者许可证或商业许可证,但是免费版DataMelt包括探索、分析和可视化数据所必要的许多关键功能。 DataMelt可在Windows、Linux、macOS和Android设备上运行。
2.KNIME分析平台
KNIME分析平台旨在帮助企业通过可视化编程来处理、分析和建模数据。该软件包括1000多个模块、数百个随时可运行的示例和众多集成工具,帮助用户借助机器学习来发现隐藏在数据中的潜在洞察力,并预测未来。 KNIME让企业能够拖放活动之间的连接点,无需编写代码。该数据分析工具使用单一的可视化工作流程。
以上软件都是能分析数据的,只不过功能上是有区别的,这个还是需要清楚了解到的,重要的是根据自身的需求,选择最适合的软件进行数据分析
评论